
Extracting Text from Windows XP Memory Image
Long Chen1,2, Lei Kang1, Zhenxing Dong1,2

 (1. Institute of Computer Forensics, Chongqing University of Posts and Telecommunications,
Chongqing 400065,P. R. China；2. Chongqing Key Laboratory of Computational Intelligence,

Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China
chenlong@cqupt.edu.cn

Abstract: User data from physical memory contains lots of important information
that are of potential evidential value in forensic analysis. This article analyzes and
summarizes the rules of text files stored in the notepad’s process in Windows XP
operating system, and then proposes a method of extracting text from physical
memory image. The experimental results show that the method can accurately extract
the text from image which contains the living notepad’s process.
Keywords: memory forensics; text file; physical memory analysis; digital forensics

1. Introduction
There has been significant research about system structures into memory forensics.

In 2006, Schuster A [1] proposed a method for extracting processes and threads
information, and this method has been proven successful in identifying system objects
that are associated with closed or disconnected processes, files and connections. In
2008, Dolan-Gavitt B [2] analyzed the structure of the registry in memory, and extracted
the registry to identify whether the system had been attacked. In 2009, based on a data
structure in windows known as Kernel Processor Control Region, Ruichao Zhang and
Lianhai Wang [3] proposed a new method to extract _EPROCESS from memory image.
In 2010, Okolica J and Peterson G[4] created a flexible tool (CAMT) using the debug
structures embedded in memory images and Microsoft’s program database (PDB)
files, and the tool can take an arbitrary memory image from any of the family of
Windows NT operating systems and extract process, configuration, and network
activity information.

There is a need for more memory forensic techniques to extract user data retained
in various Microsoft Windows applications. In 2010, Stevens R and Casey E [5] focused
on finding and carving unique signatures for command line history in memory images
without tracking it back to the originating processes. In 2011, Okolica J and Peterson
G described the structure of the Windows clipboard [6], and put forward a method to
retrieve the text in clipboard.

In addition to command line and clipboard, text file are also critical to forensic
analysis. Since Windows1.0 was published in 1985, all versions of Microsoft
Windows embedded the text edit tool notepad. Therefore, if we can reconstruct the
contents of the text file from notepad’s process, it might provide important and plain
clues for investigation.

This paper describes the rule how the text file data are stored in memory, and then
proposes a method to extract the text from physical memory image, where the text is
located in living notepad’s process.

2. Methodology

2.1 Rule

In order to understand more fully the functionality of the Notepad application and
how it stores the text in memory, it was necessary to conduct a number of live
experiments. Initial experiments were performed on Windows XP Professional SP3
(VOL) on VMware Workstation 8.0.1 configured with 512MB of RAM，and the
physical address expansions is disabled.

When text file is loaded into memory, the physical addresses in memory are not
continuous usually, but its virtual addresses in Notepad’s process are continuous.

Experiments revealed that text in memory is in Unicode，and a 12 bytes
flag"0x010004002e 00740078007400" exists in front of the starting position of text.
Moreover, the virtual addresses of text in Notepad’s process are affected by its size.

The number of characters of the text is stored with four bytes in the virtual page
0xaa, and can be located with a flag "0xffffffff". Because text in memory is encoded in
Unicode, Each Chinese or English character is represented with two bytes. Set d as
the number of character in memory, and set m as the size of the text in memory, then
m=2d.

With the size of text opened increasing, both SVPN (starting virtual page number)
and EVPN (ending virtual page number) of the text in notepad’s process move
forward. The process of change is shown in Fig. 1.

Size Smaller ——————————————————— bigger

SVPN af af b0 b0 b0 b1 b1 b1 b2 b2 b2 b3 b3 ...

EVPN af b0 b0 b1 b2 b2 b3 b4 b4 b5 b6 b6 b7 …

Fig.1 change process of virtual page number
The starting position of a text in notepad’s process is an offset from the beginning

of a page, and the size of page is 4KB. The interval of virtual page number that text
occupies in process can be computed by its size. For example, if the size of text in
memory is not greater than 4KB, then the text must be provided with one page or two
pages in memory. In this case, we can see from Fig. 1, the virtual page number of the
text may be 0xaf, 0xb0, 0xaf and 0xb0, or 0xb0 and 0xb1. So, the virtual page number
of the text must be in an interval, i.e. between 0xaf and 0xb1. Similarly, if the size of
text in memory is greater than 4KB but not greater than 8KB, the virtual page number
of the text must be between 0xb0 and 0xb3.

Set [a, b] as an interval to include all the virtual page number of the text. A rule to

compute a and b is formulated as follows (Symbol " X " defined that takes the

smallest integer which is greater than or equal to the number "X"):

 0 ae / 4KBa x m= + (1)

 0 af / 4KB *2b x m= + (2)

2.2 Address Translation
Virtual addresses needs to be translated into physical addresses to be able to locate

the text in memory image. Page directory base address which is necessary for address
translation [7] is stored in the EPROCESS Structure. The address of _EPROCESS
structure of Notepad process in physical memory can be located through searching
strings, the page directory base address at the offset 0x18. The address translation
process is shown in Fig 2.

Directory Table Offset

Page Directory

Directory
EntryPage

Directory
Base

31 22 21

Table
Entry

Page Table

12 11 0

Physical
Address

Fig.2 Address Translation

Based on the rules and the principle of address translation, the process of extracting
text is as follows:
(1) The address of _EPROCESS structure of Notepad process in physical memory is

located through searching strings, and then gets the page directory base address.
(2) Search the sign "0xffffffff" in the virtual page 0xaa, and obtain the number of

characters d, and then get the size of the text in memory.
(3) The virtual page number interval is computed based on the rule of text size in

memory.
(4) Physical address of pages in the interval is translated from virtual address by page

directory base address.
(5) Search for the flag of text starting position in the interval data, and then according

to the size m write the contents into a file.

3. Results and analysis
Eighty memory images are created for analysis by DumpIt[8], and every image is

created on Lenovo laptop with Windows XP (SP3 VOL) which physical address
extensions is disabled, and the size of memory is 512M.

A tool is implemented with above rules. The tool can extract text from memory
image correctly for all images. One example is shown in Fig. 3 and Fig. 4.

Fig. 3 Original File

Fig. 4 Generated File

4. Conclusion
This paper described some rules of text in memory, and proposed a method to

locate the virtual space of text in memory. We developed a tool to restore the text in
memory through address translation. Experimental results show that the tool
developed can recover text file correctly.

Preliminary results show that the number of starting virtual page may be different
in other versions of Windows XP in general, but these rules are also suitable to them.
So the corresponding changes should be done in the rule mentioned in section 2.1
Acknowledgements

This work is supported by Science & Technology Research Program of the Municipal Education
Committee of Chongqing of P. R. China (No.KJ110505), Key Project of Science and Technology and
Natural Science Foundation Project of CQ CSTC of P. R. China (No. cstc2011AC2155, No.
cstc2011jjA40031).

REFERENCES
[1] Schuster A. Searching for processes and threads in Microsoft Windows memory images. In:

Proceedings of the 2006 digital forensic research Workshop (DFRWS); 2006. p. 6-10.
[2] Dolan-Gavitt B. Forensic analysis of the Windows registry in memory, Proceedings of the

2008 digital forensic research Workshop (DFRWS); 2008. p. 26-32.
[3] Ruichao Zhang, Lianhai Wang, Shuhui Zhang. Windows memory analysis based on KPCR.

IAS, 2009 Fifth international conference on information assurance and security; 2009 .vol.

2, p.677-680,
[4] Okolica J, Peterson G. Windows operating systems agnostic memory analysis. In:

Proceedings of the 2010 digital forensic research Workshop (DFRWS); 2010. p. 48-56
[5] Stevens R, Casey E. Extracting Windows command line details from physical memory. In:

Proceedings of the 2010 digital forensic research Workshop (DFRWS); 2010. p. 57-63.
[6] Okolica J, Peterson G. Extracting the windows clipboard from physical memory. In:

Proceedings of the 2011 digital forensic research Workshop (DFRWS); 2011. p. 48-56.
[7] Intel Corporation. Intel 64 and IA-32 architectures software developer’s manual volume

3A: System programming guide [EB/OL]. (2007—11). Http: //www. inte1.corn/design/
processor/manuals/253668.pdf.

[8] MoonSols. Windows memory " DumpIt v1.3.2.20110401". http://www.moons- ols.com.

	Extracting Text from Windows XP Memory Image
	Long Chen1,2, Lei Kang1, Zhenxing Dong1,2
	Abstract: User data from physical memory contains lots of important information that are of potential evidential value in forensic analysis. This article analyzes and summarizes the rules of text files stored in the notepad’s process in Windows XP ope...
	1. Introduction
	2.1 Rule
	In order to understand more fully the functionality of the Notepad application and how it stores the text in memory, it was necessary to conduct a number of live experiments. Initial experiments were performed on Windows XP Professional SP3 (VOL) on V...
	When text file is loaded into memory, the physical addresses in memory are not continuous usually, but its virtual addresses in Notepad’s process are continuous.

	3. Results and analysis
	4. Conclusion
	Acknowledgements
	REFERENCES

